Descoberta de anel ao redor de corpo celeste além da órbita de Netuno pode levar a revisão da teoria sobre formação dessas estruturas no Sistema Solar
Por: Fabio Mazzitelli
Material cósmico que orbita Quaoar, que está 43 vezes mais distante do Sol do que a Terra, não adquiriu formato de uma lua, contrariando modelos teóricos bem estabelecidos. Artigo relatando a descoberta foi publicado na revista Nature.
Uma pesquisa que mobilizou 59 cientistas, vinculados a instituições de pesquisa de 14 países diferentes, relata a descoberta de um anel ao redor do objeto transnetuniano Quaoar. Além da descoberta, o estudo sugere que o anel é indicação de uma dinâmica orbital até então desconhecida, e que pode levar a revisão da atual teoria sobre formação de anéis planetários no Sistema Solar, que remonta ainda ao século 19. O artigo relatando a descoberta, intitulado “A dense ring of the trans-Neptunian object Quaoar outside its Roche Limit”, foi publicado no número mais recente da revista Nature.
O estudo tem como primeiro autor um cientista brasileiro, o professor Bruno Morgado, do Observatório do Valongo, da Universidade Federal do Rio de Janeiro (UFRJ), e envolveu a participação de quatro pesquisadores da Faculdade de Engenharia e Ciências (FEG) do câmpus de Guaratinguetá da Unesp. Morgado integrou a equipe que analisou os dados colhidos e esteve à frente da pesquisa que culminou no achado científico, resultado de uma colaboração internacional já consolidada, chamada Lucky Star, grupo liderado pelo astrônomo francês Bruno Sicardy, do Observatório de Paris.
Ao descrever um anel em torno de Quaoar, o artigo reforça descobertas recentes que indicam a existência de anéis ao redor de corpos celestes de menor porte no Sistema Solar. É o caso dos anéis já relatados ao redor do centauro Chariklo e do planeta-anão Haumea. Em Quaoar, um candidato a planeta-anão de raio estimado de 555 km, o anel circular está situado a um raio de 4.100 km do corpo central. Tal medição extrapola, e muito, os 1.780 km que seriam estabelecidos pelos modelos atuais como o limite máximo para a formação de uma estrutura deste tipo ao redor de um objeto de tais dimensões. Esta distância máxima prevista pelos modelos é chamada de Limite de Roche.
Na astronomia, o Limite de Roche é a distância entre dois corpos que, em tese, define se um objeto secundário, menor, que orbita em torno de outro maior será um satélite natural de estrutura íntegra, como a Lua, ou um anel fragmentado em diversas partículas e distribuídas ao longo da órbita do corpo celeste principal, como os anéis de Saturno. Para calcular tal limite, o astrônomo francês Edouard Roche elaborou, em 1847, uma equação para determinar este limite levando em conta, de maneira resumida, as densidades e os tamanhos dos astros envolvidos e a força de maré, relacionada à força gravitacional, para determinar as zonas de formação dos satélites naturais e dos anéis que orbitam um determinado corpo celeste.
Pela teoria vigente, todos os objetos secundários na região interna ao Limite de Roche se fragmentam pelas interações geradas pela força de maré e se tornam anéis, e aqueles situados além deste ponto preservariam o formato de satélites naturais, ou luas. Todos os anéis densos já conhecidos do Sistema Solar, casos dos anéis de Júpiter, Saturno, Urano, Netuno, Chariklo e Haumea, repetiam o padrão descrito no século 19, localizados relativamente próximos ao corpo central.
Na nova publicação, que colige uma programação minuciosa de observações feitas a partir de locais diferentes da Terra e simulações numéricas de modelos dinâmicos dos objetos em estudo, os pesquisadores relatam que o anel observado em torno de Quaoar não se encaixa neste padrão. “De fato, a equação se aplica a um satélite fluido que é interrompido perto de um planeta. Mas o processo inverso, a aglutinação de partículas em um satélite, implica mecanismos não contabilizados na equação”, escrevem os autores.
“Todos os anéis densos do Sistema Solar se encontram dentro desse Limite de Roche. O de Quaoar quebrou esse paradigma e ficamos muito, muito surpresos”, relata Bruno Morgado. “Quando mostrei os dados para a minha colaboração, falei ‘parece que tem alguma coisa estranha aqui’. Na época, ainda não sabíamos que era um anel e a primeira pergunta que me fizeram é se estava dentro ou fora do Limite de Roche. Porque, se estivesse fora, não poderia ser um anel… Esta quebra de paradigma mostra que anéis densos podem, sim, ser estáveis além do Limite de Roche. Agora cabe aos astrônomos, aos dinamicistas e aos diversos outros pesquisadores tentar entender quais são os mecanismos físicos que mantêm esse anel estável nesta região”, diz.
“É a primeira vez que vimos uma violação do que se espera para o Limite de Roche. No caso de Quaoar, você tem um anel que está muito fora. Geralmente, quando estamos observando e tentando encontrar anéis, nem observamos regiões tão distantes do corpo central. Havia dados de observações que o pessoal nem pensou em usar para procurar anéis. Fomos olhar os dados anteriores e vimos que o anel já estava lá. Não haviam sido feitos uma análise com calma e um processamento dos dados para perceber que tinha um anel ali”, afirma Rafael Sfair, da FEG-Unesp, um dos autores do artigo. “Descobrimos esse anel, temos os dados que mostram que ele está lá. Mas, por que esse material está na forma de um anel? Por que não se juntou em um satélite? Essas são as próximas questões que teremos que responder”, diz.
A constatação da formação de anéis em torno de corpos celestes menores é algo bem recente no mundo da astronomia. Até 2013, quando um anel foi descoberto no asteroide Chariklo, os cientistas só conheciam os anéis planetários. Os achados mais recentes, em Haumea e agora em Quaoar, estão relacionados a dois dos chamados objetos transnetunianos, ou TNO (na sigla em inglês). Como o próprio nome indica, esses corpos celestes estão localizados após a órbita de Netuno, área também conhecida como Cinturão de Kuiper, que fica bem longe de parte do Sistema Solar onde está situada a Terra (veja infográfico).